P.S. Xhs1991がGoogle Driveで共有している無料かつ新しいCPMAI_v7ダンプ:https://drive.google.com/open?id=1tbBVhosqX30ckkgslg1GuiMFklIv9HN3
Xhs1991には、CPMAI_v7学習教材にお金を使った場合に快適な学習を保証する義務があります。ホットラインはありません。 CPMAI_v7の合格率は98%以上です。また、CPMAI_v7試験問題に関する相当なサービスをお楽しみいただけます。そのため、メールアドレスにメールを送信することをお勧めします。他のメールの受信トレイに送信する場合は、事前にアドレスを慎重に確認してください。ウェブサイトのアフターサービスは、実践のテストに耐えることができます。当社のCPMAI_v7試験トレントを信頼すると、このような優れたサービスもお楽しみいただけます。
| トピック | 出題範囲 |
|---|---|
| トピック 1 |
|
| トピック 2 |
|
| トピック 3 |
|
| トピック 4 |
|
| トピック 5 |
|
私たちPMIが提供するCPMAI_v7クイズトレントは、理論と実践の最新の開発に基づいた深い経験を持つ専門家によってコンパイルされているため、非常に価値があります。 製品を購入する前に、まず製品を試してください。 Xhs1991のCPMAI_v7試験の合格に役立つだけでなく、時間とエネルギーを節約できるため、CPMAI_v7試験準備を購入する価値があります。 お客様の満足が私たちのサービスの目的です。CPMAI_v7クイズトレントを簡単にCognitive Project Management in AI CPMAI v7 - Training & Certification Exam購入してください。
質問 # 74
You're working on a computer vision application and realize that you do not have enough real world data for the project. You need additional data created to support your training needs. Specifically, the images you need are of people in different poses. What is the best way to obtain this data?
正解:A
解説:
Synthetic data is "artificially generated data that mimics real-world data, used when actual data is scarce or sensitive." Generating synthetic training images of people in the required poses allows you to rapidly augment your dataset without logistical, privacy, or labeling overhead.
=========
質問 # 75
You are leading a project to develop a new predictive maintenance solution. Together with your project team you determine your data needs, see if you have access to the data, and then begin working on the project.
Which phase best describes the work you are performing?
正解:B
解説:
Phase II: Data Understanding is dedicated to identifying data requirements, collecting initial data, assessing data quality, and verifying that necessary datasets are accessible and fit for modeling. Determining what data you need and confirming access are the core activities of this phase .
質問 # 76
Enhancing and cleaning data is an important action during which phase of CPMAI?
正解:D
解説:
The CPMAI v7 methodology groups all data-centric preparation activities-including both data cleansing ("Clean data") and data augmentation ("Enhance & Augment data")-into Phase III: Data Preparation. In this phase, teams focus squarely on constructing the dataset to be used for modeling by performing all required cleaning, transformation, and enhancement operations.
Phase III: Data Preparation is defined in the Workbook's Table of Contents as covering Data Cleansing & Enhancement tasks ("Clean data" and "Enhance & Augment data") .
Under Phase III, the Generic Task Group: Data Cleansing & Enhancement explicitly lists "Task: Clean data" (bringing data quality to modeling-ready levels) and "Task: Enhance & Augment data" (producing derived attributes and new records) as core activities .
=========
質問 # 77
You're running an image recognition project and realize that you do not have enough data of a certain type of vehicle. What is the best course of action to get the additional labeled data you need?
正解:B
解説:
In CPMAI v7's Phase III: Data Preparation, teams are instructed to construct the final modeling dataset through a variety of enhancement activities-including data augmentation, which specifically covers transforming existing records or generating entirely new records to increase volume and variety. This
"augmentation" is described as "constructive data preparation operations such as the production of derived attributes or entire new records, or transformed values for existing attributes" .
Moreover, under the Training & Test Data Requirements task, the Workbook explicitly asks project teams to determine "What transformation or multiplication activities can be done to increase training data volume while maintaining quality" . Performing data transformation (e.g., image rotations, color jitter, cropping) and multiplication (synthetic record generation) directly addresses the lack of labeled samples without incurring the cost or delay of third-party purchases, making option B the correct approach.
=========
質問 # 78
Creating machine learning models can be complicated. Your team wants to use tools called Automated Machine Learning (AutoML) to simplify the process. You know of another team that has used AutoML tools and it's saved the team a lot of time.
However, what's the one area you should not have the AutoML tool help with?
正解:A
解説:
CPMAI's Usage of AutoML task instructs teams to "Document how AutoML tools will be used for model creation" and to verify that the output can be integrated into the overall I/O flow . While AutoML excels at automating algorithm selection, model selection, hyperparameter tuning, and even preliminary performance metrics, CPMAI places iterative modeling and evaluation squarely under the manual Model Evaluation phase-where teams must interpret results against business success criteria and decide on next steps.
Entrusting that high-level, iterative decision-making to an AutoML black box would undermine the human- centric evaluation that CPMAI mandates.
=========
質問 # 79
......
ITエリートになるという夢は現実の世界で叶えやすくありません。しかし、PMIのCPMAI_v7認定試験に合格するという夢は、Xhs1991に対して、絶対に掴められます。Xhs1991は親切なサービスで、PMIのCPMAI_v7問題集が質の良くて、PMIのCPMAI_v7認定試験に合格する率も100パッセントになっています。Xhs1991を選ぶなら、私たちは君の認定試験に合格するのを保証します。
CPMAI_v7キャリアパス: https://www.xhs1991.com/CPMAI_v7.html
BONUS!!! Xhs1991 CPMAI_v7ダンプの一部を無料でダウンロード:https://drive.google.com/open?id=1tbBVhosqX30ckkgslg1GuiMFklIv9HN3
Campus : Level 1 190 Queen Street, Melbourne, Victoria 3000
Training Kitchen : 17-21 Buckhurst, South Melbourne, Victoria 3205
Email : info@russellcollege.edu.au
Phone : +61 399987554